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An asymptotic theory describes the stationary instability of convective flow between 
differentially heated vertical planes a t  large Prandtl numbers. The theory is 
concerned with the structure for A 9 1 where A is a Rayleigh number based on the 
horizontal temperature difference and the distance between the planes. As such i t  is 
relevant to the instability of flow in a vertical slot of aspect ratio h % 1 where the 
convective regime corresponds to order-one values of a non-dimensional parameter 
y which partly depends on the vertical temperature gradient generated in the slot 
and can be approximated by y4 = A / 8 h .  Instability is shown to set in at a critical 
value of y that  compares well with experimental observation. The lower branch of 
the neutral curve conforms to a boundary-layer type approximation while the upper 
branch has a critical-layer structure midway between the planes which becomes fully 
developed as the first reversal of the vertical velocity of the base flow is encountered 
near the centreline. 

1. Introduction 
Convective flows in two-dimensional vertical slots where one side is held at a 

different temperature from the other are found in a variety of insulation and heat 
exchange processes. Experiments by Elder (1965), Vest & Arpaci (1969) and Seki, 
Fukusako & Inaba (1978) have shown that a prominent feature of such flows is the 
onset of a secondary motion where transverse rolls are generated within the main 
circulation driven by the horizontal temperature difference. The basic nature of the 
flow in the slot depends on three non-dimensional parameters: the aspect ratio h 
(height/width), a Rayleigh number A based on the horizontal temperature difference 
and slot width (and defined explicitly in (2.4) below) and the Prandtl number of the 
fluid, v. The aspect ratio h is generally assumed to be largt:. When A + h and 
provided the flow remains stable, heat is transferred across thc slot mainly by 
conduction. Stability analyses of this regime show that the conductive state can be 
destroyed either by time-dependent or stationary instability depending on whether 
(T is greater or less than about 12.7 (Korpela, Gozum & Baxi 1973), and in the latter 
case the instability is actually an imperfect bifurcation of the base flow (Daniels 
1 9 8 5 ~ ) .  Both instabilities are avoided, however, if the Prandtl number of the fluid is 
sufficiently large and the flow enters a single-cell convective regime if A 2 645h. A 
characteristic feature of this regime is the development of a positive vertical 
temperature in the fluid. Elder (1965) showed that this could be incorporated in a 
simple exact solution of the Boussinesq equations which could be used to model the 
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behaviour of the base flow, albeit in an approximate sense, away from the ends of the 
slot,. The solution depends on the single combination of parameters 

y = ($PA);, ( 1 . 1 )  

where p is a non-dimensional measure of the vertical temperature gradient which can 
usefully be approximated by the value 

1 
2h 

p=-  

(Elder 1965). Elder’s experiments, using largc-Prandtl-number fluids, demonstrated 
that the main convective circulation initially becomes unstable to a stationary 
pattern of vertically stacked transverse rolls. 

The main aim of the present work is to determine the point a t  which instability 
occurs and the subsequent structure of the neutral curve for stationary disturbances. 
Previous studies based on Elder’s solution, the most comprehensive of which is that 
by Bergholz (1978), which corrected and extended the earlier analysis of Vest & 
Arpaci (1969), have regarded y ,  as defined by ( l . l ) ,  and A as independent 
parameters; the base flow is fixed by the former and the stability problem, which 
depends also on both A and (T, is solved to yield a critical Rayleigh number A,.  A 
numerical value of the aspect ratio of the corresponding vertical slot is deduced from 
(1  . l) and (1.2). From an asymptotic viewpoint, however, if the value of h is large and 
the value of y is finite, ( 1 . 1 )  and (1.2) imply that the appropriate stability problem 
is that for which A is large, and i t  is this alternative interpretation that forms the 
basis of the present study. The basic state and stability equations are set out in $ 2 .  
For a fluid of infinite Prandtl number i t  has already been established that as A + co 
one branch of neutrally stable solutions corresponds to long-wavelength disturbances 
described by a boundary-layer-type approximation to the stability equations 
(Daniels 1987). Some additional results are contained in $3. In $4 the asymptotic 
structure for disturbance wavelengths that remain finite as A + co is described. A 
critical value y = yc a t  which stationary convection first occurs in a fluid of infinite 
Prandtl number is confirmed, and for y > yc the location of an upper branch of the 
neutral curve is established ($5). The results are discussed briefly in $6. 

2. Formulation 

maintained at, temperatures 
Consider a fluid layer bounded by infinite rigid vertical planes x* = + ; I *  

where T,*, AT* and P are constants and x* is the vertical coordinate. Two- 
dimensional steady motion between the planes a t  infinite Prandtl number and in the 
Boussinesy approximation is governed by the non-dimensional equations 

(2.3) 

Here $ and T are the stream function and temperature non-dimensionalized by the 
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thermal diffusivity K and AT* respectively, while the coordinates x,z are non- 
dimensionalized by 1*. The Rayleigh number A is defined by 

A = p*g d T * l * 3 / ~ ~ ,  (2.4) 

where p* is the coefficient of thermal expansion, g is the acceleration due to gravity 
and v is the kinematic viscosity of the fluid. The boundary conditions a t  the vertical 

(2.5) 

planes are w 
ax 

@ = - = O ,  T = P x f $  ( ~ = f i )  

and the non-dimensional velocity field is given in terms of the stream function by 

The exact solution of interest here is the vertical two-way flow defined by 

$ = AY(x), T = ~ z + @ ( x ) ,  (2.7 1 
(2.8) 

Y = P = 0 ,  @ = + a  ( x = + i ) .  (2.9) 

(2.10) 

(2.11) 

where, from (2.2), (2.3) p" = @', @"+4y4P = 0, 

where y is defined by (1 .1 )  and, from (2.5) 

The solutions for Y and 0 are even and odd functions of x respectively and can be 
written 

Y = ~ - ~ ( D + D + c o s h  yxcosyx+D:sinh yxsinyx), 

0 = 2(D- - D,) sinh yx cos yx - 2(D+ + D-) cosh yx sin yx, 

where D ,  = -(coshiysin$y~sinh$ycos$y)/8d, 

D = (sinh y+sin y)/16d, 
(2.12) 

and d = sinh2 h + sin2 b. The limit y + 0 corresponds to the conductive regime where 
(Batchelor 1954) 

(2.13) 

and there is upflow for x > 0 and downflow for x < 0. As y increases the first notable 
development is an inversion of the horizontal temperature gradient, which becomes 
negative near the centreline x = 0 when y = y8 = 4.73 ; further inversions O'(0) = 0 are 
given, from (2.11), by the zeros of tanh&+ tan&. The first flow reversal near the 
centreline occurs when y = yb = 7.85 and further reversals, Y ( 0 )  = 0, are given, 
from (2.10), by the zeros of tanh $y - t a n h .  As y + 00 the oscillations compress into 
' buoyancy layers ' near each vertical plane and the intervening core region is left 
vertically stratified and motionless. Near the cold plane, the buoyancy-layer solution 
obtained from (2.10)-(2.12) is 

@ - -ie-XcosX, - 1 4y - 2  ePXsinX, (2.14) 

where X = y(x+i). Profiles of the velocity and temperature a t  various values of y are 
displayed by Bergholz (1978). Previous stability analyses of the boundary-layer 
regime (y+ 00) include those by Gill & Davey (1969) and Daniels (19856) and, for 
unit Prandtl number, instabilities of rotating Poiseuille flow discussed by Wollkind 
& DiPrima (1973) and in the Ekman-layer limit by Lilly (1966) would also be 
relevant. 

The present paper is concerned with the structure of neutrally stable, stationary 
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disturbances to the above state which can be represented in normal-mode form by 

(2.15) 
solutions 

where a is the vertical wavenumber. Substitution into (2.2), (2.3) and linearization 
in the perturbation functions q5 and 8 yields the coupled system 

& ~ - 2 ~ * q 5 / / + ~ 4 #  = v, (2.16) 

(2.17) 

to be solved subject to (2.18) 

Solutions for finite values of y and A are included in the results obtained by 
Bergholz (1978); here the aim is to identify the asymptotic structure for large A 
which, as explained earlier, is of primary significance in applications to vertical-slot 
flows. Before proceeding with this in $3  it is worth noting some relevant general 
properties of (2.16)-(2.18). First, if a is an eigenvalue associated with eigenfunctions 
#(x), O(z) then -a is also an eigenvalue, associated with #( -z), -0( -z), Second, if a 
is complex then -a* is also an eigenvalue, associated with eigenfunctions q5*(x), O*(x), 
so that consideration of (2.16)-(2.18) may be restricted to the first quadrant of the 
complex-a plane. The main interest is in neutrally stable solutions where a is real but 
spatially decaying solutions with Im (a) + 0 are also relevant to the flow near the 
ends of a vertical slot in the conductive regime ( y  = 0) and previous results (Daniels 
1985a) provide a useful guide to the behaviour of the eigenvalues a t  higher values 
of y .  Where real values of a do occur, the symmetry properties of (2.16)-(2.18) allow 
the eigenfunctions to be expressed in the form 

@ - A (  Y(z)  + $(z) eiaz), T N @z+ O ( x )  + 8(z) eiUZ, 

8” - a28 = iaA( O’q5 - Y ’ S )  - 4y4#’, 

q5 = q5’ = 8 = 0 (z = +$. 

(2.18) # = q5(0) + ;q5(e) ,j = ,g(e) + i@o), 

where # O ) ,  Oc0) and # ( e ) ,  19~) are real odd and even functions of 2 respoctively. 

3. The lower branch of the neutral curve 
One set of solutions of (2.16)-(2.18) arises for long wavelengths such that 

a - ZAP’ as A +  co, (3.1) 

where ti is finite. In  this case the leading approximations to the stability equations 
and boundary conditions are 

(3.2) pv = 8’, 

where # N $(z) and 8 - g(x)  as A + 03. In an earlier study (Daniels 1987) it was 
established that real eigenvalues exist for y > yc where yc is the lowest value of y 
for which the system 

(3.5) 

has a solution in - t  6 x 6 0 with 

h = f ’ ( O )  = 0. 13.6) 

The value of yc must be greater than ya = 4.73 since otherwise O r /  Y’ > 0 and f is an 
increasing function of x. The most accurate numerical results gave a first zero of b at 
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FIGURE 1. The lower branch of the neutral curve and the asymptote (3.10). 
Y 

yc = 6.30 and while it is tempting to conjecture that the value is exactly 2n, which 
would correspond to the first maximum (for variations in y )  of the centreline stream- 
function value 

(3.7) 1 sinh $ - sin $y ( cosh + cos iy  
@ = 44p)-4 

of the base flow, this result has not been established. Further investigation has 
indicated that additional zeros of b occur near yb = 7.85. The nature of the 
singularity of (3.5) a t  x = 0 changes when y = yb since at this point the general 
behaviour @'/Y = O(x-l) as Ixl+O is replaced by @'/Y - 6x-3 leading to the 
oscillatory form 

The exponential character of the local coordinate is consistent with the occurrence 
of zeros of (3.6) very close to yb and later results ($4) confirm the existence of an 
intricate structure in the immediate vicinity of this point. 

Figure 1 shows the real eigenvalue a plotted as a function of y which, as is 
demonstrated below, can be interpreted as the lower branch of a neutral stabitity 
curve. As y +- yc  + the value of a increases and a critical layer of thickness forms 
on the centreline x = 0. An asymptotic analysis indicates that 

f ~ c ~ s i n ( 2 / 2 l n I s l + c , )  asx- to- .  (3.8) 

t3.9) 

and at leading order provides the value of yc from the outer equation (3.5) and the 
condition (3.6), which results from the relevant bridging conditions across the critical 
layer. Consideration of correction terms to the analysis given by Daniels (1987) 

- 
a - a0(y-- yc)-l (ao constant), 
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FIGURE 2. Buoyancy-layer profiles of stream function and temperature 

suggests the inverse power-law dependence (3.9), due essentially to the reaction 
produced by the terms on the left-hand side of (3.3) outside the critical layer. These 
are neglected a t  leading order but produce an effect of relative order E-' which must 
be balanced by a correction to the value of y of the same order of magnitude. The 
actual determination of E,, is extremely lengthy, however, and is reserved for future 
consideration. 

(3.10) 

where E ,  x 152.3 (Daniels 1987). Here the full balance in (3.2), (3.3) is achieved in the 
buoyancy layers where x - + t  = O(y-l)  and 

@ -  gg)+igp), 6 -  y-3(&0)+i6F)). (3.11) 

At larger values of y ,  
E - E,  y4 (z, constant), 

The solutions approach constant limiting values in the core given by 

e- I,  6- i / ~ y - ~ ,  (3.12) 

where the symmetry forms (2.19) imply that h must be real. Numerical solution of 
the buoyancy-layer problem a t  the cold wall (Daniels 1985b) gives h = -0.65 and the 
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FIQURE 3. Stream function and temperature profiles for the lower braych cf thelleutral curve 
at y = 10, expressed in the symmetry forms 6 = + 8 = /Ye) + W0). 

above value of ti,. The neutral disturbance consists of large rolls in which the 
circulation through the buoyancy layers is linked by horizontal flow across the core ; 
the boundary-layer profiles (3.11) are shown in figure 2. 

Typical stream function and temperature profiles for the lower branch of the 
neutral curve, a t  y = 10, are shown in figure 3;  note the central variation of $*) 
absent in the boundary-layer limit, which indicates that a t  lower values of y the roll 
boundaries slant up towards the hotter plane, consistent with experimental 
observations. 

It should be added that the reduced system (3.2)-(3.4) also admits an infinite set 
of imaginary eigenvalues. These are related to the vertical spatial variation of the 
base flow of the convective regime in a vertical slot (Daniels 1987). 

4. The structure for A 9 1 : finite wavelengths 

of A-f, the thickness of a critical layer on the slot centreline. Thus 
Solutions for which a remains finite as A -+ 00 require basic expansions in powers 

a N ao+~- fa1  as A - t c o ,  (4.1) 
and an outer solution is needed in the form 
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From (2.17), 
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(4.3) 

and substitution into (2.16) gives the fourth-order equation 

for $bo. A t  the vertical planes the conditions 

$bo = $; = 0 (z = ++), (4.5) 

together with (4.3), ensure that both the flow and thermal boundary conditions are 
satisfied to leading order, although boundary layers of thickness order A-i provide 
adjustments to higher-order terms. 

At the centreline x = 0, the solution of (4.4) generally contains a logarithmic 
singularity due to the vanishing of the base-flow velocity Y ,  so that 

q5, -aa'+b+z+xz --a'lnlxl+ci +d+x3+O(x41nlxl) a s x + O f ,  (4.6) 

where a', . . . d' are independent complex constants. The real constants p and w arise 
from the behaviour of the base state as 1x1 + O ,  

(L 1 
0' = - p + O (  q, Y = -wx+0(x3)  (4.7) 

and, from (2.10), (2.11), are given by 

1. sinh cos + cosh sin +y 1 cosh $ sin $ - sinh h cos +y '=-'( sinh2%+sin2h )> w = 4 y (  sinh2$ + sin2 +y 
(4.81 

The value of w is positive for y < y b  while p changes sign from negative to positive 
a t  ya. If a+ are non-zero a critical layer of thickness order A-i is needed to smooth 
out the singularity in (4.6) and local expansions for the stream function and 
temperature there are 

+ = ~ , ( 6 ) + ~ - S ~ ~ ( 6 ) + ~ - 9 1 n ~ ~ , , ( 6 ) + ~ - ; 6 , ( 6 ) + ~ - ~ 6 , ( ~ ) + .  . . ,\ 
8 = A%,(6) + e"&) + . . . , (4.9) J 

where 6 = Aix. Substitution into (2.16) and matching with (4.6) leads successively to 
the results 

(4.10) 
6, = a+ = a-, $ = bf = b- ' = --!L 

2o 3w 1 

6: = gl + constant, 

together with lim (&(A)-&( - A ) )  = e",(r) dr, 

where 6, = a+pw-%((), c =  wig and 6 is the solution of 

d+rn 
(4.1 1) 

_ _  6" - ia, 68 = - ia, ; e" - [-l (14 --f co) (Re (a,) =# 0). (4.12) 

A Fourier transformation gives 

s=iJornexp(-$-ipi)dp (Re(a,) > O ) ,  (4.13) 
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from which the integral in (4.11) is evaluated as irca+p/w and it now follows that the 
bridging conditions across the critical layer are 

inpa+ 
at  = a-, b’ = b-, C+ = c-+- d+ = d-. (4.14) 

2w ’ 

The fourth one uses the fact that e, in (4.10) must match with 8, in the outer 
expansion, the finite part of which is continuous across the layer, from (4.3). 

Solutions of the outer problem (4.4), (4.5) in x < 0 are constructed in the form 

40 = v;f1(4 + v , f z w >  (4.15) 

where v;<, are complex constants and the functions f, and f, satisfy 

and are uniquely defined for -: < x < 0 by the conditions 

(4.16) 

(4.17) 

f, N a,+b,z+x2 w l n l x l + c i  +dix3 (i = 1,2) (4.18) 

and since the symmetry of the base functions implies that the solution for #o in 

(4.19) x > 0 can be written 

2w I AS x + O - ,  

4 0  = 4f , ( -x)+v2f , ( -4> 

where v:, are further complex constants, the bridging conditions (4.14) become 

(Y;-v:)a,+(v,-v;)a, = 0, (4.20a) 

(v; + v:) b, + ( v ,  + v:) b, = 0, (4.20 b )  

(v; - v:) c1 + (v; - vl) c, = - inp( .:al + via2)/2w, (4 .20~)  

(v;+~:)d,+(v;+v~)d~ = 0. (4.20d) 

Two sets of solutions are obtained. In  the first 4o is non-zero on the centreline and 

6, d, - 6 ,  d, = 0. (4.21) (4.20b, d) give 

In the second the solution for $, is odd and the singularity is avoided; in this case 
v:, 2 = -VT, 2 and (4.20‘3 C )  give a, c2 - c1 a2 = 0, (4.22) 

For a given value of y ,  the real and imaginary parts of a. must be chosen to ensure 
that the real and imaginary parts of either (4.21) or (4.22) are satisfied. 

Solutions were found numerically by using a fourth-order Runge-Kutta scheme to 
solve (4.16), (4.17) at given values of a, and y ;  the initial step a t  x = -t was 
accomplished by use of a Taylor series and solutions for f, and f 2  were computed, 
generally with either 40 or 80 steps, to within one step of the singularity a t  x = 0. An 
accurate determination of the constants ai, b,, ci, d, proved to be vital in locating the 
correct paths of the eigenvalues in the complex-a, plane and an extrapolation based 
on (4.18) could not determine the value of d, sufficiently accurately. Instead, it was 
found necessary to introduce the two integral forms 

(4.23) 
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1 2 3 4 5 6 Y c  7 Y Q ~  
Y 

FIGURE 4. Eigenvalues a, obtained from (4.24) : real part (-), imaginary part (----). 1)ifferent 
branches are labelled ( 1 )  . . .  (6). Section ( 5 )  is purely imaginary. Section (6) from y, = 6.30 to  
yb = 7.85 is purely real and constitutes the upper branch of the neutral curve. 

and it is then easily shown by integration of(4.16) and use of (4.17) that the condition 
(4.21) becomes 

Direct computation of dl,  is avoided and accurate numerical values of the integrals 
(4.23) are easily obtained. 

The zeros of (4.24) or (4.22) were found for a fixed value of y by Newton iteration 
based on a numerical determination of the rates of change of their real and imaginary 
parts. Convergence of the value of a. could generally be achieved within four or five 
iterations, given reasonable initial estimates of its real and imaginary parts. 
Solutions were initiated at  the conductive state, for which y = 0. Here solutions of 
(2.16)- (2.18) for general values of A are related to the decay properties of the flow 
near the ends of a vertical slot and have been reported in that context by the present 
author (1985a). As A --f 00, one set of eigenvalues adopts the scaling 01 = O(A-l ) ,  
consistcnt with the results of $3, while the other sets remain finite and must tend to 
values consistent with the results of the present computation a t  y = 0 ;  both the 
leading eigcnvalue obtained from (4.24) (ao = 3.26+4.673) and the first odd 
eigenvalue obtained from (4.22) (a,  = 2.30+ 7.431) are, indeed, in excellent agreement 
with these earlier results. Figures 4 and 5 show the development of the first four 
cigenvalues as y increases to the point a t  which the base flow reverses on the 
centreline ( y b  = 7.85). At y z 6.1 the real part of the leading eigenvalue falls to zero 
and a purely imaginary branch joins successive modes emanating from the 
conductive state a t  y = 0. This in turn reaches zero a t  y = yc = 6.30 whereupon the 
real part is regenerated to form the upper branch of the neutral curve stemming from 
yc. Its properties are discussed in the next section but i t  is now clear that as A + 00, 

bl+01;(b211-bl l*)  = 0. (4.24) 
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4 II 
I 

1 2 3 4 5 6 7 Y b 8  
Y 

FIGURE 5. Eigenvalues no obtained from (4.22) : real part (-), imaginary part (----) 
Different branches are labelled ( l ) ,  (2) .  

yc is the critical point of stationary instability of the infinite-Prandtl-number flow for 
the entire range of vertical wavelengths (see figure 8 below). 

5. The upper branch of the neutral curve 
Near yc  the properties of the base flow are defined by regular expansions 

(0, ~ , L L , @ )  - ( @ O >  ~ o , Y o ~ ~ o ) + ( Y - Y c ) ( @ l ,  Y 1 3 P 1 3 ~ l ) >  (5.1) 

and the behaviour of the leading eigenvalue of figure 4 may be investigated by 
assuming that 

a6 - 4 Y - Y c )  "SY+YC? (5.2) 

where a is an unknown complex constant. The existence of the critical point of the 
reduced system (3.5), (3.6) ensures that such a point exists where both the real and 
imaginary parts of the eigenvalue a. vanish simultaneously ; the zero of a; is linear 
because the governing equations (4.16) depend only on the square of a,. Near yc ,  

(fl, 21 61,J = (!lo, 2 0 , h O .  20) + (Y - Y c )  ( f l l . 2 1 ~  bll,  21) +. * .  . (5.3) 

The condition (4.24) implies b,, = f i o ( 0 )  = 0,  (5.4) 
where, from (4.16), flo is the solution of 

(5.5) 

Thus flo = f I y c ,  consistent with the determination of ye from the equivalent reduced 
system ( 3 4 ,  (3.6). 
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Consideration of the correction terms in (5.1)-(5.3) enables some predictions to be 
madc concerning the departure of the neutral curve from the neighbourhood of ye. 
Again the crucial information is obtained ultimately from the first of the equations 
(4.16) which requires that fll satisfies 

f,, = f i l  = f;, = 0 (x = -1 whcrc: 2 ) .  

Also, from (4.24), b,, = f ; , (o)  = 0. 

Since f,, = af/aylYc is a particular solution of (5.6), (5.7) for a = 0 (where f is the 
solution of (3.5)) and db/dy I y c  + 0, another particular solution must be generated by 
a in order to achieve the condition (5.8).  The value of a so determined must be real 
(since flo is real) and the fact that db/dy I y c  < 0 indicates that it must be positive. 
From (5.2), this result confirms the behaviour found in figure 4, where a, is imaginary 
for y = yc- and real for y = y e + .  

yc stream function and temperature profiles on the upper 
branch of the neutral curve are obtained from (4.15) and (4.19) once the complex 
constants v f ,  v l  and v; are determined in terms of v; from ( 4 . 2 0 ~ 4 ) .  Since a, is real 
the solutions can be converted into the standard form (2.19) by a suitable choice of 
the arbitrary complex constant v; and this gives $, = $$‘)+i$r) where 

At general values of y 

for x < 0. (5.9) 

x #P = !&(a, b1- b2 a,) (a,  f&t -a2f1(4) 

#P = 2(az c1- cz a,) (b,  fi(4 - b, fz(x,), 

The profiles a t  yc, along with the corresponding forms for 8, are shown in figure 6. 
Note the infinite singularity in 6,, as x + 0 f which is smoothed out by the critical- 
layer structure, and the fact that a t  small amplitudes the signs of $$’) and &,@ are 
such that the critical flow will have the form of rolls rotating with the main 
circulation and skewed upwards to the hotter side, consistent with the observations 
of Elder (1965), Seki et al. (1978) and others. 

As the value of y increases to yb the neutral disturbance becomes confined to thc 
neighbourhood of the critical layer and the wavenumber increases. It is found that 

“0 c(y,--y)-t as Y + Y b - ,  (5.10) 

where c is a finite constant, and that variations in the outer region are characterized 
by a local coordinate E where x = ( yb - y ) k  (5.11) 

The base-flow velocity has the form 

- ~ - ( y ~ - y ) g ( + p ~ 3 + ~ ~ )  a s y + y b - ,  (5.12) 

where ji = ,u I Y b  and (5 = - do/dy I Y b  > 0, while the horizontal temperature gradient is 
given by 

o’=-- ~+oO(yh-y)Ez2) as YJyb-. (5.13) 

Hence 

where 

0’ 
- - 6(yb - y)-z(z3 + QE)-’ 
Y as y + yb - , 

6w 3 
Q = - = -tan ($yh) = 0.0243. 

ji 2YE 

(5.14) 

(5.15) 
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FIGURE 6. Stream function and temperature profiles a t  the critical point y,. expressed in the 
symmetry forms $,, = $?) + i$g), On = Of) + it??). 

It is convenient to introduce the transformations 

c = o-:c", z = &, (5.16) 

whereupon the scaling (5.10), together with (5.1 1) and the assumption that, 
qbo(z) - &2), ensures that a full balance is retained in the stability equation (4.4), 
which becomes 

(5.17) 

As 2 + -  co independent solutions 6 =f; and 6 =& approach the two available 
exponentially decaying forms 

f; - ezz, - 2ezz (Re ( E )  > 0 ) ,  (5.18) 

(5.19) 

and the critical-layer bridging condition (4.24) becomes 
- -  - -  
b,Zl-blZ, = 0 where?,,, = l : m f ; , 2 d i .  (5.20) 

A numerical solution located a real eigenvalue of this system a t  E = 0.988, equivalent 
to an upper-branch asymptote 

a, - 6.27 (yb-y)-i  as y+yb- ,  (5.21) 

which is in good agreement with the results of figure 4. 
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FIGURE 7 .  Stream function and temperabure profiles for the upper branch of the neutral curve 
at, y = 7 .7?  expressed in the symmetry forms $o = $:I+ i$F), Bo = 19:) =it):). 

Profiles of 4, and 0, obtained from (5.9) at y = 7.7 and shown in figure 7 confirm 
the confinement of the solution to  the neighbourhood of the critical layer. From 
(4.12). the width of the critical layer is 

(5.22) 

whereas that  of the outer zone 2 - 1 is equivalent t o  x - (yb- y);. Thus the critical 
layer contains the entire disturbance when f ,  defined by 

x: - A-’ ;l -? 
La: 3w 3 - A-I (Yb -Y)-A- 

- 
(5.23) p - -1.. 

Y = YtJ+, (P4  2Y> 

is order one and further scalings 

a: - (,&4)%, x - (&A)-%, q5 - (@A)-;&i), 6 - i(i), (5.24) 

lead to the problem of solving the full critical-layer system 

(5 .25)  

in order to  trace the eigenvalue Oi as a function o f f .  Note tha t  here the scalings (5.24) 
imply that  the disturbance consists of small vortices of horizontal and vertical 
dimension order-A-i confined to the region of weakest flow at the centreline x = 0. 
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U h A ,  x 10-5 (A& Author 

1 0 3  19 3.0 11.2 Elder (1965) 
900 20 3.7 11.7 Vest & Arpaci (1969) 
480 15 1.8 10.4 Seki et al. (1978) 

10 4 0.42 10.1 Simpkins & Dudderar (1981) 

TABLE 1 .  Experimental results for the onset of stationary instability of high-Prandtl-number 
flow in a vertical slot 

Y C  

Y 
FIGURE 8. Schematic diagram of the structure of the neutral curve in the (7, a)-plane as A + 03. 

6. Discussion 
The present study provides a new interpretation of the stability of high-Prandtl- 

number flow in vertical slots. The usual procedure in numerical studies based on 
Elder’s (1965) approximate solution, such as that by Bergholz (1978), is to fix 
attention on a given base flow prescribed by the value of y and to compute neutral 
curves in the (A,  a)-plane. Critical values of A are then matched to  the aspect ratio 
h through relations of the form ( l , l ) ,  (1.2). Here i t  is argued that the stability 
properties of the convective regime are more usefully described by an analysis based 
on the assumption that A P 1 since this is consistent with the basic premise that the 
ratio A / h  is finite. This interpretation leads to the identification of a universal neutral 
curve in the ( y ,  a)-plane and predicts that instability first occurs for the convective 
flow corresponding to y = yc = 6.30. Use of the approximate relation (1.2) then 
implies instability of the slot flow when 

(A/h)i  = 2iyy, = 10.6, (6.1) 

a result which seems to be largely in line with experimental observations for a range 
of aspect ratios (table 1). 
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Lower and upper branches of the neutral curve stemming from yc are found to 
encompass disturbances ranging from long waves in which z - A (which, if relevant, 
would fill the slot) to shorter finite-aspect-ratio rolls in which z N 1.  The latter type 
of disturbance concentrates in a critical layer on the centreline as y increases to the 
value yb = 7.85 a t  which the vertical velocity of the base flow reverses. Further 
analysis is needed to elucidate the properties of the full critical-layer system (5.25) 
at this point and to extend the upper branch of the neutral curve into the region 
y > yb where it is expected that each additional zero of the vertical base flow is 
accompanied by its own critical-layer structure. Another requirement is the 
determination of the critical wavelength at ye, which is presumably proportional to 
some positive power of A .  The results (3.9) and (5.2) suggest that it is of order A4 but 
a complete analysis of the unification of the two branches of the neutral curve near 
yc is required to confirm this and also to incorporate weakly nonlinear effects in a 
consistent manner. The main findings of the present study are summarized 
schematically in figure 8. 
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